Business Analytics

Business Analytics is used to:

  • Analyze data from a variety of sources. This could be anything from cloud applications to marketing automation tools and CRM software.

  • Use advanced analytics and statistics to find patterns within datasets. These patterns can help you predict trends in the future and access new insights about the consumer and their behavior.

  • Monitor KPIs and trends as they change in real-time. This makes it easy for businesses to not only have their data in one place but to also come to conclusions quickly and accurately.

  • Support decisions based on the most current information. With BA providing such a vast amount of data that you can use to back up your decisions, you can be sure that you are fully informed for not one, but several different scenarios.

While these are the most common use cases, there are four primary methods of business analysis. They’re implemented in stages, starting with the simplest. One method isn’t more important than another, it all depends on what your end-goal is when using BA.

When you use these four types of analytics, your data can be cleaned, dissected, and absorbed in a way that makes it possible to create solutions for no matter what challenges your organization may face.

  1. Descriptive analytics: Interpretation of historical data and KPIs to identify trends and patterns. This allows for a big picture look of what happened in the past and what is happening currently using data aggregation and data mining techniques.

    Many companies use descriptive analytics for a deeper look into the behavior of customers and how they can target marketing strategies to those customers.

  2. Diagnostic analytics: Focuses on past performance to determine which elements influence specific trends.

    This is done using drill-down, data discovering, data mining, and correlation to reveal the cause of specific events. Once an understanding is reached regarding the likelihood of the event, and why an event may occur, algorithms are used for classification and regression.

  3. Predictive analytics: Uses statistics to forecast and assess future outcomes using statistical models and machine learning techniques. This often takes the results of descriptive analytics to create models that determine the likelihood of specific outcomes.

    This type is often used by sales and marketing teams to forecast opinions of specific customers based on social media data.

  4. Prescriptive analytics: Uses past performance data to recommend how to handle similar situations in the future. Not only does this type of business analytics determine outcomes, but it can also recommend the specific actions that need to occur to have the best possible result. This is often achieved using deep learning and complex neural networks.

    This type of business analytics is often used to match various options to real-time needs of a consumer